If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x-250=0
a = 4; b = -20; c = -250;
Δ = b2-4ac
Δ = -202-4·4·(-250)
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{11}}{2*4}=\frac{20-20\sqrt{11}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{11}}{2*4}=\frac{20+20\sqrt{11}}{8} $
| -5x+12+6x=2+x+10 | | x14−6=−5 | | 16x-10x-14x+12x=8 | | 6q-3=8q-7 | | -3(5a-6)=-31-8a | | 5x-54=3x+16=180 | | 6q=3=8q-7 | | 5n-51=29 | | 2d+4d-d-4d+4d=15 | | -9-51=-21x+36 | | 4m=4(m−1) | | n/4-8=-42 | | 4w-1+3(2w+3)=-4(w+2) | | -2+4p=16+p+3-3 | | −20+8r=−5(−2r+5)−3r | | 8(x-8)=40 | | (x-5)=(2x+14) | | x=7x+90 | | 9(d-82)=63 | | 1/6y-3=-14 | | -x/7+13=17 | | x-9=-3+4x | | -73+11x=4x+88 | | 3.0=x^2-10x+21 | | 7n=4n+4 | | 4^x=230 | | 4x2+6x=2 | | 22+2g=82 | | -8=-a/4-3 | | (3)=2x+5, | | 12=(10-2t) | | 2(5x+4)=6x+4x−1 |